Combining Model-based and Genetics-based Offspring Generation for Multi-objective Optimization Using a Convergence Criterion [CEC7278]
نویسندگان
چکیده
In our previous work [1], it has been shown that the performance of multi-objective evolutionary algorithms can be greatly enhanced if the regularity in the distribution of Pareto-optimal solutions is used. This paper suggests a new hybrid multi-objective evolutionary algorithm by introducing a convergence based criterion to determine when the modelbased method and when the genetics-based method should be used to generate offspring in each generation. The basic idea is that the genetics-based method, i.e., crossover and mutation, should be used when the population is far away from the Pareto front and no obvious regularity in population distribution can be observed. When the population moves towards the Pareto front, the distribution of the individuals will show increasing regularity and in this case, the model-based method should be used to generate offspring. The proposed hybrid method is verified on widely used test problems and our simulation results show that the method is effective in achieving Pareto-optimal solutions compared to two state-of-the-art evolutionary multiobjective algorithms: NSGA-II and SPEA2, and our pervious method in [1].
منابع مشابه
EMCSO: An Elitist Multi-Objective Cat Swarm Optimization
This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملPareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملOptimum sliding mode controller design based on skyhook model for nonlinear vehicle vibration model
In this paper a new type of multi-objective differential evolution employing dynamically tunable mutation factor is used to optimally design non-linear vehicle model. In this way, non-dominated sorting algorithm with crowding distance criterion are combined to fuziified mutation differential evolution to construct multi-objective algorithm to solve the problem. In order to achieve fuzzified mut...
متن کاملMULTI-OBJECTIVE OPTIMIZATION OF TIME-COST-SAFETY USING GENETIC ALGORITHM
Safety risk management has a considerable effect on disproportionate injury rate of construction industry, project cost and both labor and public morale. On the other hand time-cost optimization (TCO) may earn a big profit for project stakeholders. This paper has addressed these issues to present a multi-objective optimization model to simultaneously optimize total time, total cost and overall ...
متن کامل